

First Workshop ARENHA project: "Introduction to novel technologies related to ammonia-based energy storage"

SOFC technology for hydrogen-based power generation

Christian Eckart
Contact: christian.eckart@ikts.fraunhofer.de

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862482

Index

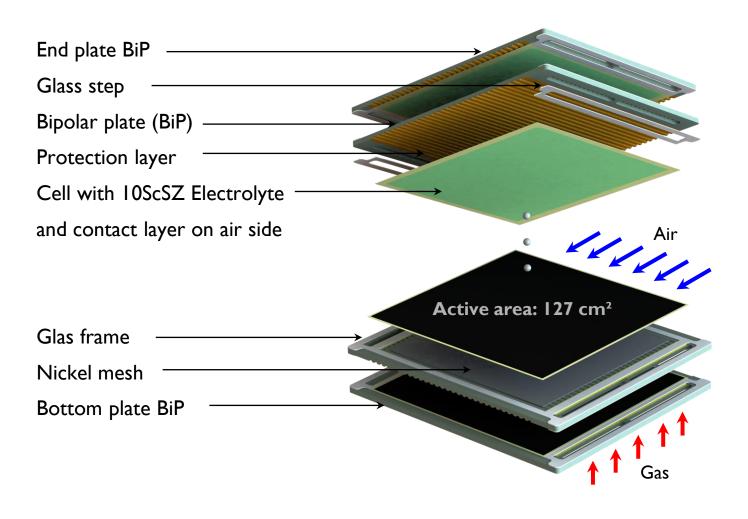
- I. Introduction
- 2. Stack components and manufacturing MK35x
- 3. Stack results
 - I. SOFC performance map
 - 2. SOFC long-term stability
- 4. MK35x in ARENHA
- 5. Conclusion

I. Introduction

Intention

- > SOC stack modules of I-200 kW_{el} for decentralized power plants
- High electrical efficiency
- Robust low cost stacks with high reliability

Core technology


- Near-net-shape interconnect: powder metallurgical processed and partially coated with protection layer
- High power density cells with IOScSZ electrolytes (electrodes from Fraunhofer IKTS)
- MK35x-Stack development > 15 years
- → MK355 Interconnect from Porite Taiwan (commercial production line)

2. Stack components MK354

2. Stack manufacturing MK35x

Cell production

Glas production

Robot assisted stack assembly

Joining and initializing

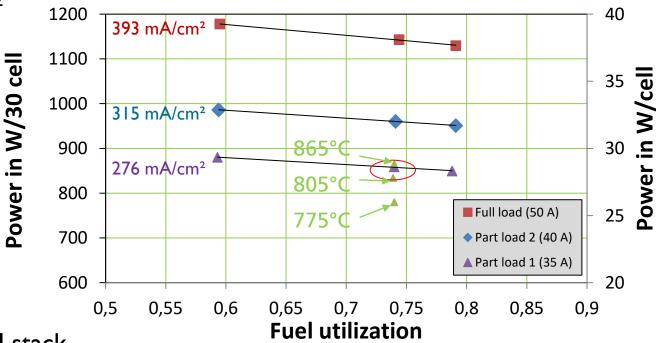
Bipolar plate

Elektrolyte

Nickel mesh

- Continuous component inspection
- > Stacks with 10-40 cells

3. Stack results: SOFC performance map

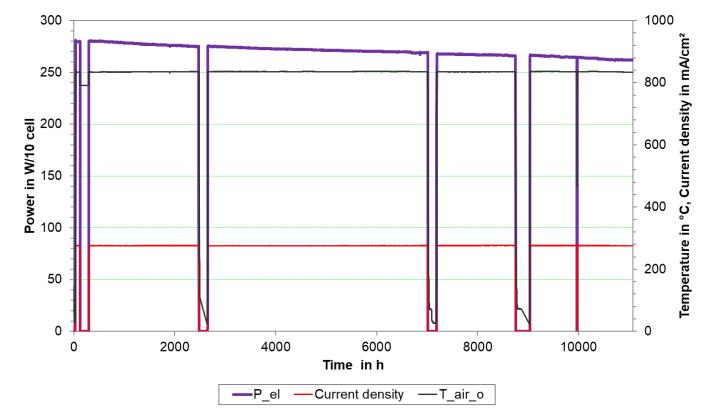

MK352 30-cell stack in a hotbox: rated power operation

 \triangleright Fuel: 40 % H₂ in 5 % H₂O and N₂

> Air: 100 sl/min

 $T_{cat.o} = 830^{\circ}C - 840^{\circ}C$

- ➤ At reference point 850 W/30 cell stack
- ➤ Up to 1200 W/30 cell stack possible

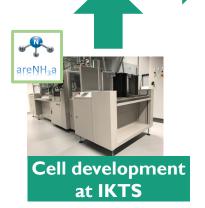


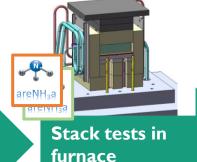
3. Stack results: SOFC long-term stability

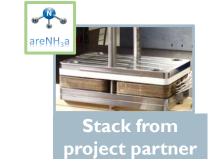
MK354 10-cell stack in furnace:

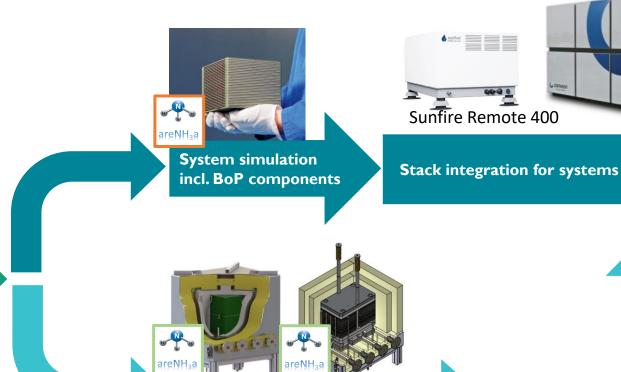
- > I=35 A
- > FU=75 %
- > Fuel: 40 % H₂ in N₂
- > Air: 60 sl/min
- ► T_{cat,o}≈835°C

 \rightarrow $\Delta P/P0 < 0.7 \%/1000 h (> 10,000 h); <math>\Delta ASR = 20 \text{ m}\Omega \text{cm}^2/1000 \text{ h}$

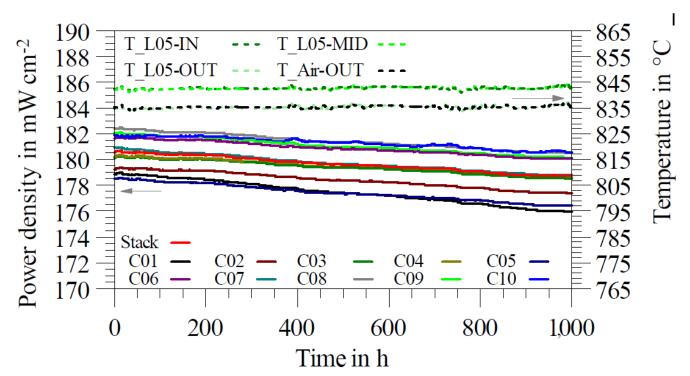





4. MK35x in ARENHA: Overview



Stack module operation in demonstrators


Convion C50

4. MK35x in ARENHA: Power generation from ammonia using SOFC

MK352 10 cell stack in furnace: humidified ammonia (30% steam) in SOFC¹

- Long-term test: 1000 h
- **FU: 80%**
- J=226 mA/cm²
- $T_{cat,o}$ =835°C
 - $\Delta P/P0=1.1 \%/1000 h$ (comparable to H_2 - N_2 -mixtures for first 1000 h)

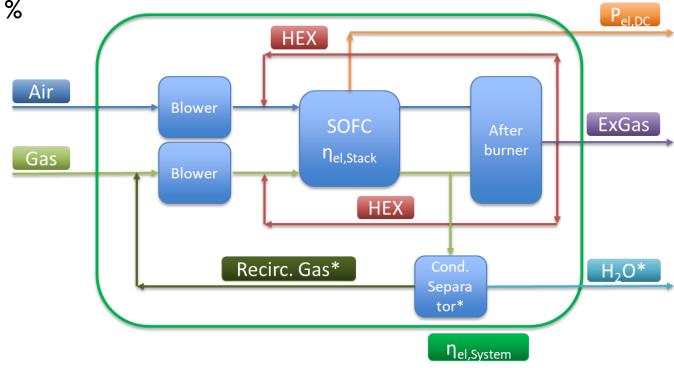
B. Stöckl, V. Subotic, M. Preininger, S. Megel, Towards a wastewater energy recovery system: The utilization of humidified ammonia by a solid oxide fuel cell stack, Journal of Power Sources 450 (2020) 227608, https://doi.org/10.1016/j.jpowsour.2019.227608

4. MK35x in ARENHA: Power generation from ammonia using SOFC

Simulation in ASPEN: 40 cell stack

Power output: I kW_{DC}

> 100 % ammonia; FU=75 %


> T=850°C

> CPOX, *AGR (70%)

System efficiency:

➤ CPOX: 46 %_{AC}

> AGR: 56 %_{AC}

5. Conclusion

- Proofed stack technology MK35x in ARENHA
 - Robust stacks suitable for power generation from ammonia and hydrogen generation

 \triangleright RedOx stability: $\triangle P/P0 < 0.4 \%/10$ cycles (75 cycles)

> SOFC Degradation: $\Delta P/P0_{(835^{\circ}C)} = 0.7 \%/1000 \text{ h} (>10.000 \text{ h}, 40\% \text{ H}_2 \text{ in N}_2)$

 $\Delta P/P0_{(835^{\circ}C)} = 1.1 \%/1000 \text{ h} (1.000 \text{ h}, \text{humidified ammonia})$

- > SOFC system simulation with ammonia:
 - System efficiency: up to 56 %_{AC} with anode gas recycling

SOFC technology for hydrogen-based power generation

First Workshop ARENHA project, ENGIE Lab CRIGEN, 07-04-2022

Thank you for your attention

Website project: https://arenha.eu/

Contact: christian.eckart@ikts.fraunhofer.de

