

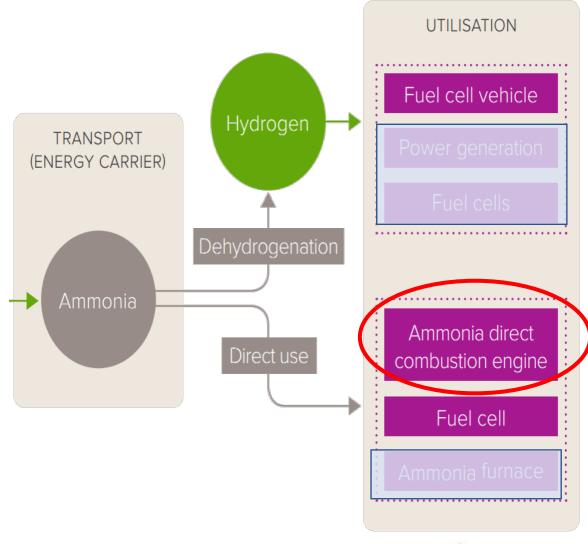
First Workshop ARENHA project: "Introduction to novel technologies related to ammonia-based energy storage"

Direct use of ammonia for mobility (ICE)

Pr Christine Rousselle Contact: christine.rousselle@univ-orleans.fr Contact: sebastien.houille@stellantis.com

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862482

The present publication reflects only the author's views. The Commission is not responsible for any use that may be made of the information contained therein.



3 solutions

areNH₃a

- To decompose ammonia by means of new optimized reformers to recover hydrogen
- $\hfill\square$ To use ammonia directly
 - $\hfill\square$ in fuel cells
 - In combustion systems such as turbines or internal combustion engines.

$I. NH_3$ as fuel for vehicles = an old story

60s : theoretical studies, 'Research Engine' CFR studies (USA)

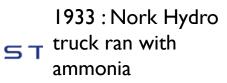
2007-2012 :

Michigan

University

3 800 km

50%NH₃/Gasoline



2013 Marangoni Toyota GT-86 Eco-Explorer,

KIER, Korea

2012-2015 :

Dual Fuel gasoline or Diesel until 80% NH₃

1940s

Belgium

NH₃/Coal gas

10 000 miles

$I. NH_3$ as fuel for vehicles = an old story

60s : theoretical studies, 'Research Engine' CFR studies (USA)

1933 : Nork Hydro truck ran with ammonia 2007-2012 : Michigan University 50%NH₃/Gasoline 3 800 km

Belgium

1940s

 $NH_3/Coal$ gas

10 000 miles

First ARENHA Workshop, ENGIE Lab CRIGEN (April 7th, 2022) (Reproduction without prior permission of ARENHA is prohibited).

2013 Marangoni Toyota GT-86 Eco-Explorer,

2012-2015 : KIER, Korea Dual Fuel gasoline or Diese

until 80% NH₃ Univ

^{ese} 2013 Università di Pisa H₂ reformer

Project

(Ontario Univ.)

ACTIVATE norvegian project, Silesian University project 2022-2024

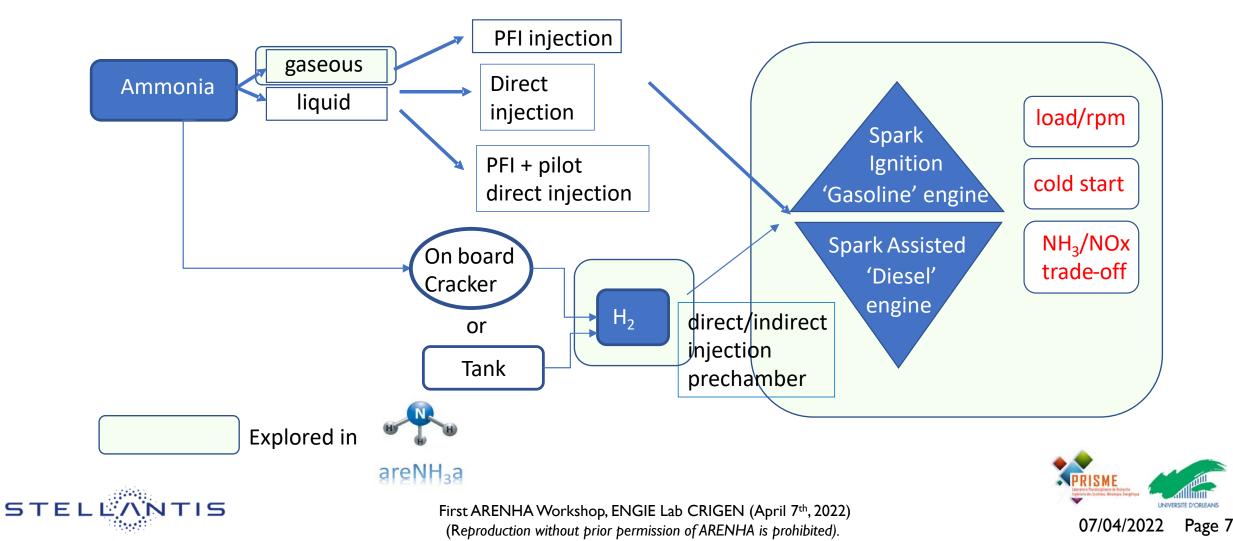
2018-2021 C-Free Run project, Hydrogen Engine Center (lowa) Ford 460 (9.4 I/ CR 13.5) max RPM 2500 Start and stop engine on hydrogen, when warm run on 85-90% ammonia and 10-15% hydrogen

I. Global ammonia combustion characteristics

	Hydrogen	Methane	Methanol	Gasoline	Diesel Fuel	Ammonia	consequences
Low Heating Value (MJ/kg)	120	49	19.9	44	45	18,6	Compensated by air/fuel ratio
Air/Fuel ratio at stoichiometry (kg/kg)	34.2	17.65	6.46	14.6	14.6	6.06	, High fuel consumption
Flammability limit in air (vol.%)	4.5-75	5-15	6.7-36	1.3-7.6	1-6	15-30	Low risk
Laminar flame speed (cm/s)	210	38	40	~40		$\overline{7}$	Difficult propagation
Auto-ignition Temperature(°C)	537	595	465	275	225	651	Difficult
Octane Number (-)	>120	120	109	88-98		>120	Low knock occurency ?
Adiabatic flame temperature (°C)	2519	2326	2228	2392		2107	Colder flame
Quenching distance (mm)	0.64	2		3	7	7	Lower heat wall loss
E							
Constant Con	(Reproduct	ion without prior t	permission of AREN	IHA is prohibited).		07/04/2022 F

I. Main results in engine tests

	Combusti	on and Perforn	nances	in SI eng	gines						
	Minimum H ₂ for combustion Efficience			cy		Output energy					
	stability										
	Between 5-10% in vol Higher f			or ER>=1		Less than	gasoli	ne at 1	low		
							and partial load				
	Amount needed decreases with Higher that		han gasoline		Increase	with	CR	or			
	load increase (full load: 0%)Slight effect of engine speedDecrease with H2 incr					boosted pressure But only from 2000					
				e with H ₂ incre	ase					to 4000 rpm in small engine	
	Pollutani	ollutant Emissions before any aftertreatment device									
		ER decrease	ER	increase	H ₂ increase		Load				
		(lean)	(rich)							
	NOx	++			+		slight in	crease	but	no	
	(ppm)	maximum >					universal	trend			
		gasoline									
	Unburnt		++				no univers	sal trend	1		
	NH ₃				But H ₂ at exhau	st					



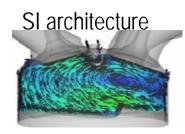
I. Best possibilities to use ammonia only in ICE

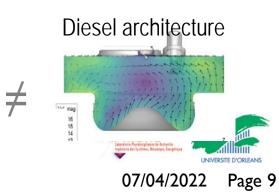
Difficulties to auto-ignite NH3 :

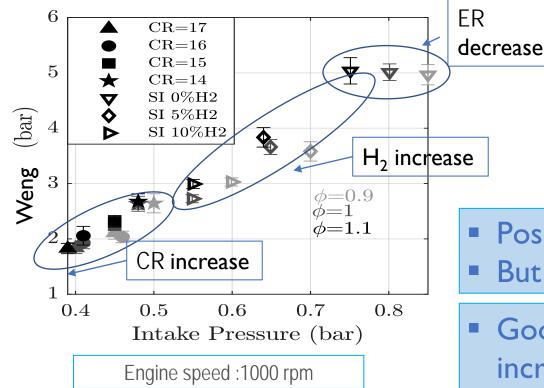
- spark ignition mode : optimum

• Objectives : assessment of combustion stability, efficiency, pollutants for pure NH₃

- Identification of H_2 requirement
- Specificity of 'cold start' conditions (650 rpm)
- Identification of limits and tradeoffs (NOx versus NH₃)






- Objectives : assessment of combustion stability, efficiency, pollutants for pure NH₃
 - Identification of H_2 requirement
 - Specificity of 'cold start' conditions (650 rpm)
 - Identification of limits and tradeoffs (NOX versus NH₃)
 - Different engines designs :
 - 2 standard engine : gasoline and diesel (but in single cyclinder mode) :
 - SI engine = 'current' EP6
 - regular Compression Ratio
 - SA Diesel engine = 'current' DV6 + spark plug instead of fuel injector
 - High Compression ratio : better for Ignition and Flame propagation
 - I research large stroke engine SI
 - SI engine with high CR

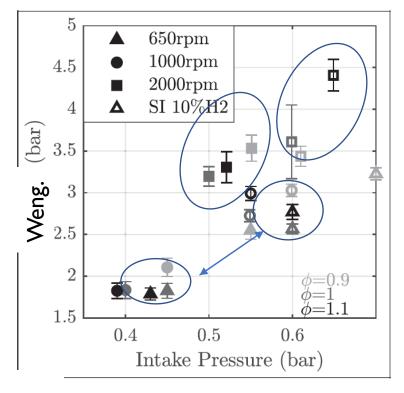
Engine Type	Gasoline engine PSA EP6DT	Diesel engine PSA DV6
Displacement Volume V _{cyl}	400 cm ³	400 cm ³
Compression Ratio	10.5	4 to 7
Valves	4	2
Tumble ratio	2.4	
Swirl ratio		2

Possible to run without H₂ even with standard SI
But impossible to reach stable conditions without H₂

- Good improvement of NH₃ combustion with CR increase despite of flow field
- No H₂ needs
- Extension of low load limits
 - Iower limit with slightly rich

Page 10

07/04/2022


areNH₃a

STEL

2. Impact of engine architecture

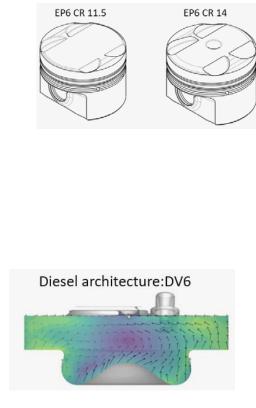
□ Solution : Increase the CR to reach 'cold start' conditions

EXAMPLE 14. Minimum IMEP versus minimum intake pressure for three engine speeds – CR = 17:1, Tin = 50°C. Previous data in SI engine with 10% H₂.

ГІЅ

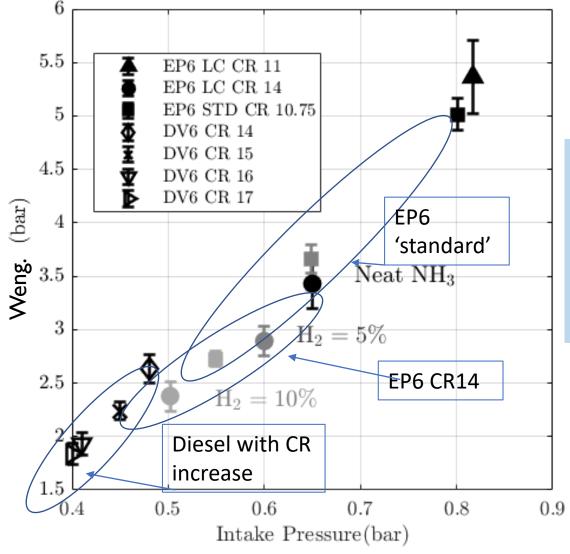
Engine Type	Gasoline engine PSA EP6DT	Diesel engine PSA DV6		
Displacement Volume V _{cyl}	400 cm ³	400 cm ³		
Compression Ratio	10.5	 4 to 7		
Valves	4	2		
Tumble ratio	2.4			
Swirl ratio		2		

V


07/04/2022

UNIVERSITE D'ORLEAN

Page 11


- Extension of low load limits
 - Iower limit with slightly rich
 - I.7 b IMEP (as Koike et al. with Reformer)
 - CR 17, 650 rpm
 - Even at 2000 rpm, stability and limit improvement

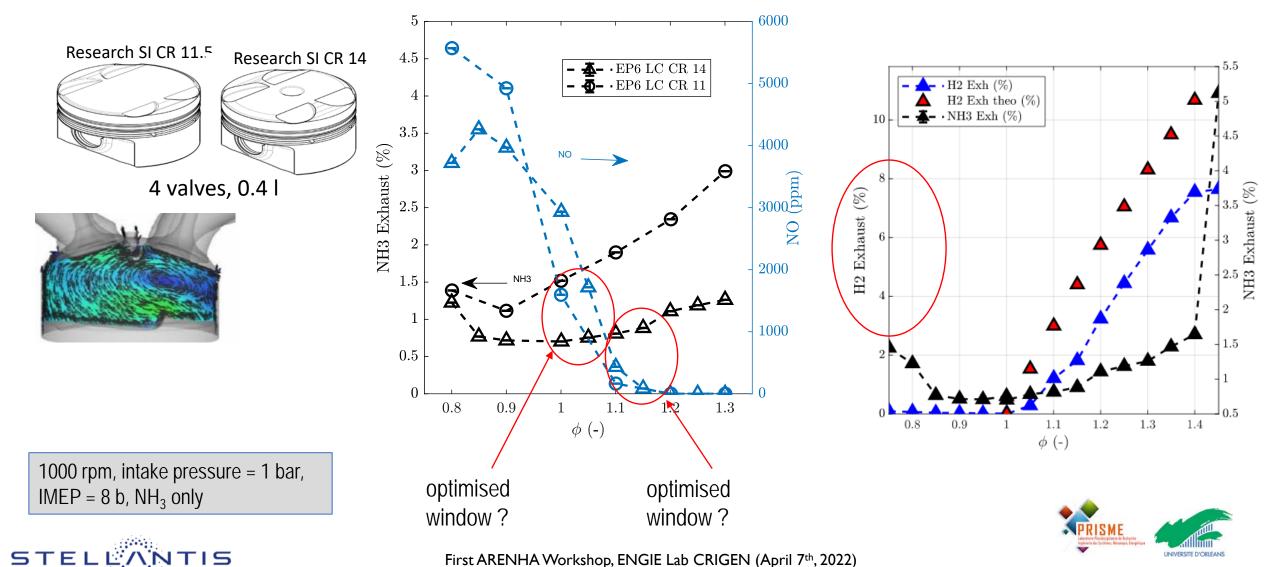
TIS

STELE

First ARENHA Workshop, ENGIE Lab CRIGEN (April 7th, 2022)

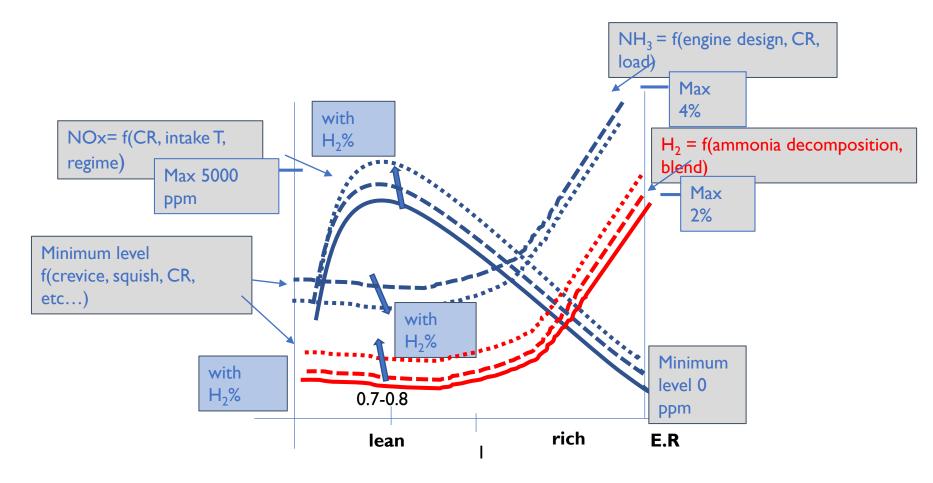
(Reproduction without prior permission of ARENHA is prohibited).

Example at 650 rpm :


- H₂ required with for research SI engine even at CR14 !
- Lowest IMEP in SAD engine,

even without H₂

3. Consequence on emissions


(Reproduction without prior permission of ARENHA is prohibited).

07/04/2022

Page 13

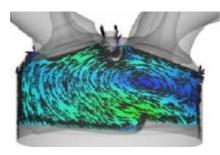
3. Consequence on emissions

First ARENHA Workshop, ENGIE Lab CRIGEN (April 7th, 2022)

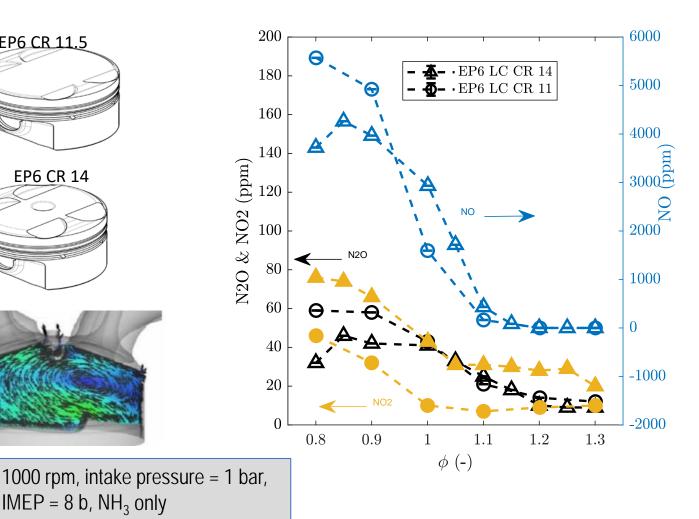
(Reproduction without prior permission of ARENHA is prohibited).

3. Consequence on emissions

- NO_X
 - Minimum for **rich mixture**, Maximum around 0.7-0.8 until 5000 ppm !
 - Increase with H₂ addition
- NH₃
 - Minimum for lean mixture/stoichiometry, max can be
 4%
 - Function of engine design !
 - H₂ emissions due to 'in situ' decomposition of NH₃



3. Consequence on emissions : nitrogen specie



STELLANTIS

IMEP = 8 b, NH_3 only

First ARENHA Workshop, ENGIE Lab CRIGEN (April 7^{tl} areNH₃a

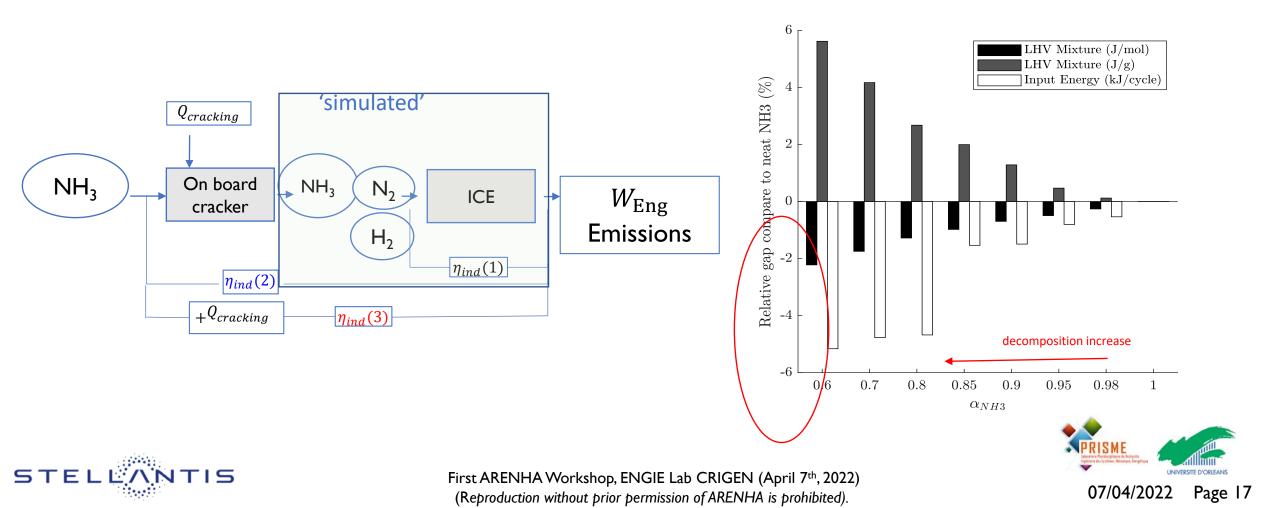
(Reproduction without prior permission of ARENHA is prohibited).

 $NO_2 \& N_2O$: -

- Max for lean, min for rich
- NO₂ -
 - <<< NO
 - Function of CR ?
 - N₂O

-

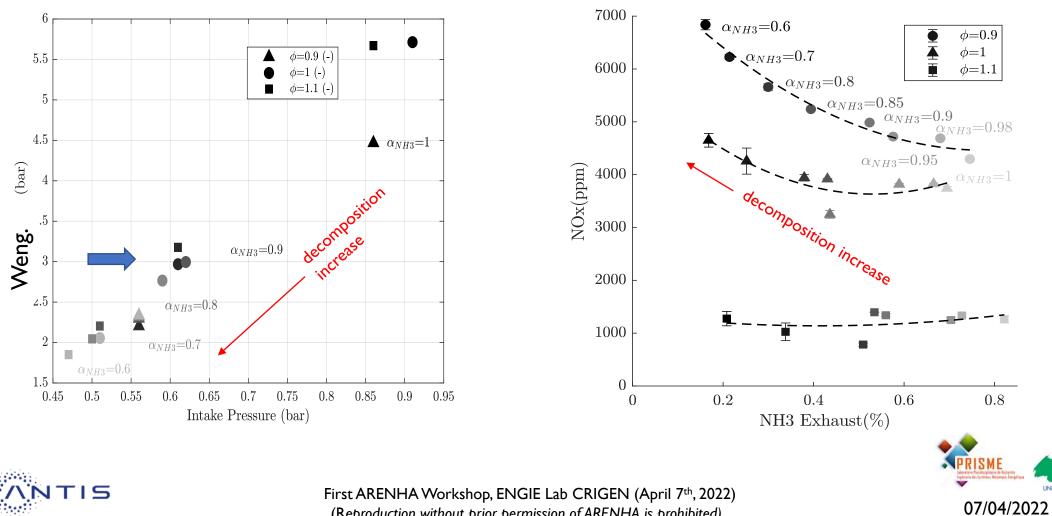
- Max ≈ 100 ppm
- BUT \approx 1.5% CO₂ for GWImpact
- No real link with CR


07/04/2022

Page 16

4. Ammonia on-board cracking : what benefits ?

$$\alpha NH_3 + (1-\alpha)\left(\frac{3}{2}H_2 + \frac{1}{2}N_2\right) + \frac{3}{4}(O_2 + 3.78N_2) \rightarrow \frac{3}{2}H_2O + \left(\frac{1}{2} + \frac{3}{4} * 3.78\right)N_2$$



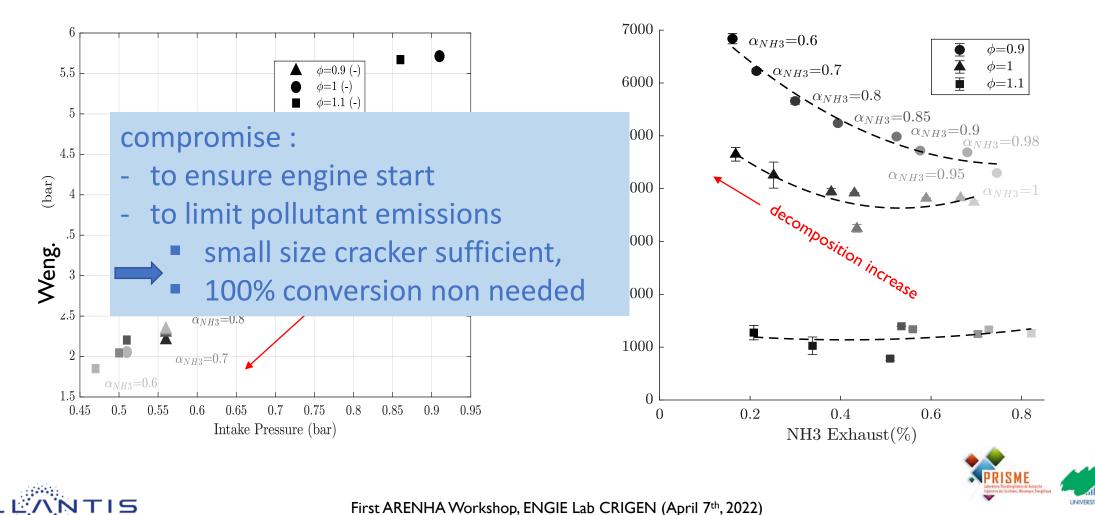
STEL

4. Ammonia on-board cracking : what benefits ?

$$\alpha NH_3 + (1-\alpha)\left(\frac{3}{2}H_2 + \frac{1}{2}N_2\right) + \frac{3}{4}(O_2 + 3.78N_2) \rightarrow \frac{3}{2}H_2O + \left(\frac{1}{2} + \frac{3}{4} * 3.78\right)N_2$$

(Reproduction without prior permission of ARENHA is prohibited).

INIVERSITE D'ORIEAN


Page 18

STE

4. Ammonia on-board cracking : what benefits ?

$$\alpha NH_3 + (1-\alpha)\left(\frac{3}{2}H_2 + \frac{1}{2}N_2\right) + \frac{3}{4}(O_2 + 3.78N_2) \rightarrow \frac{3}{2}H_2O + \left(\frac{1}{2} + \frac{3}{4} * 3.78\right)N_2$$

(Reproduction without prior permission of ARENHA is prohibited).

07/04/2022

Page 19

5. Conclusions and perspective Direct use of ammonia in ICE

- GOOD NEWS : YES IT IS POSSIBLE !
- In standard Gas וe engine :
 - small cont
 - even with 🛁 📅
 - means of 'sm
- In standard Dies
 - addition of s_l
 - more unburn

Direct use of ammonia for mobility (ICE) First Workshop ARENHA project, ENGIE Lab CRIGEN, 07-04-2022 *Thank you for your attention*

Website project: https://arenha.eu/

Thanks to STELLANTIS-PRISME TEAM J. Bouriot, S. Houillé, C. Dumand, P. Brequigny, B. Raitiere, A. Mercier,

areNH₂a