

Advanced materials and Reactors for Energy storage tHrough Ammonia

Ammonia Cracking using Advanced Membrane Reactors

08/04/2025 Page I

(Disclosure or reproduction without prior permission of ARENHA is prohibited).

M60 Consortium Meeting 24-03-2025

Our goal | Scale-up membrane technology to cover for industry needs

- 2,000sqm plant in Loiu, inaugurated in November 2022
- Ist world industrial palladiumalloy membrane production factory
- More than 15 years of R&D to optimize the manufacturing process
- +60 people in the team, and growing!

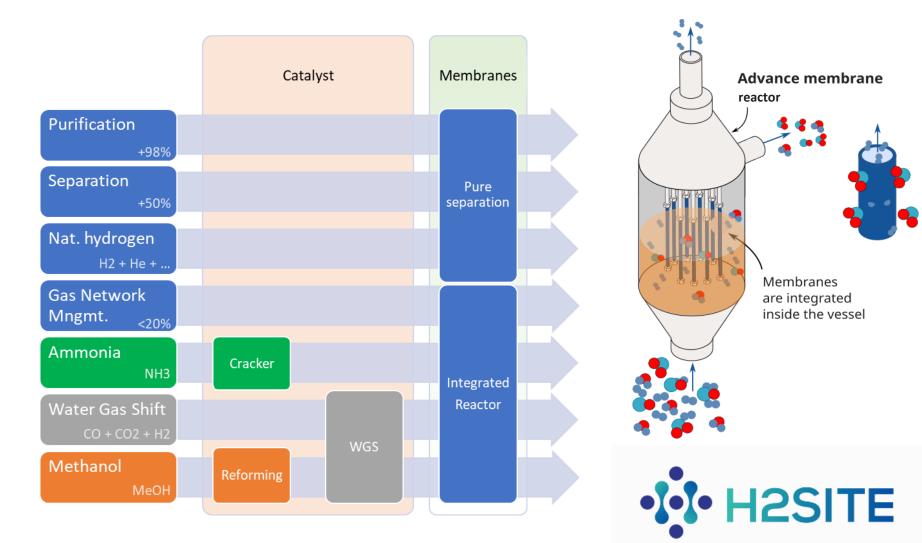
Advanced Membrane Reactor & Separator | High purity from carriers and blends

Palladium-Alloy membranes that produce high purity hydrogen (99.97%)...

...to efficiently recover 98% of the hydrogen from wide variety of feedstocks...

... for **on site generation** in a reduced footprint

M60 Consortium Meeting 24-03-2025


08/04/2025 Page 3

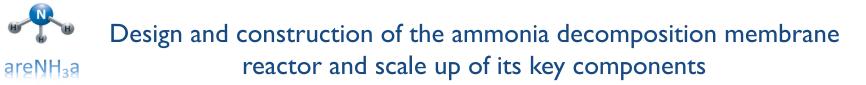
(Disclosure or reproduction without prior permission of ARENHA is prohibited).

Applications | Advanced integrated reactor for reaction and separation

M60 Consortium Meeting 24-03-2025

(Disclosure or reproduction without prior permission of ARENHA is prohibited).

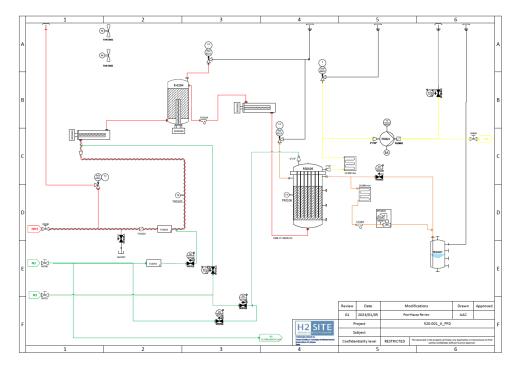
Design and construction of the ammonia decomposition membrane reactor and scale up of its key components

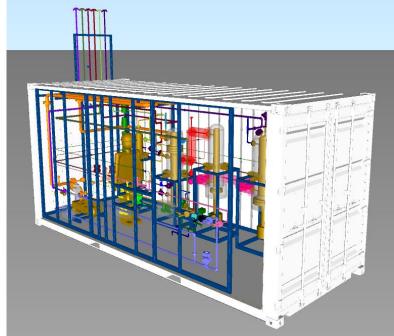


Design & construction of Ammonia Cracker & Membrane Reactor

- Design of the ammonia decomposition system
- Manufacturing of hydrogen separation membranes for prototype
- Construction and commissioning of the membrane reactor prototype

Operation of Ammonia Cracker & Membrane Reactor


- Testing and validation of the prototype by CNH2
- The equipment was installed in Fertiberia



Design of the ammonia cracker

- Designed in a 20' HC container:
 - Plug & Play
 - Helps contain ATEX zones.

areNH₃a

Design and construction of the ammonia decomposition membrane reactor and scale up of its key components

Construction of the ammonia cracker

- Main challenges:
 - Hydrogen piping & equipment requires high quality welding and thorough testing.
 - Membrane reactor needs to be accessible for membrane replacement: a manual ATEX rated hoist was installed to bring the reactor out of the container.

Design and construction of the ammonia decomposition membrane reactor and scale up of its key components

Construction of the ammonia cracker

- Main challenges:
 - Small bore piping and tubing cannot take the weigth of valves and instrumentation, special attention had to be paid to supports.
 - High temperatures require well designed and installed insulation.

- CNH2 operated the cracker
- H2Site provided onsite training and remote monitorization via H2Site's remote Control Room.
- Great communication between both teams.
 - Thanks to the CNH2 team!

08/04/2025 Page 9

(Disclosure or reproduction without prior permission of ARENHA is prohibited).

M60 Consortium Meeting 24-03-2025

- Main challenges:
 - Nitrogen pressure
 - Ammonia composition
 - Low temperature in separation
 - Daily start-up and shut down

areNH₃a

Operation of the ammonia cracker

- Nitrogen pressure: The system was designed to work at 8-10 bar, also during heating.
 - Available nitrogen in Fertiberia is 5 bar, so in order to overcome the pressure drop of the system, Nitrogen flow had to be reduced, which made heating slower.
 - \succ Heating was supposed to be less than 4 hours, but it took around 6.
 - This would have prevented testing, because by the time the equipment was hot it was time to shut down for the day.
 - CNH2 reorganised working hours to work longer days so that testing could be done.

Ammonia composition and pressure:

- There are 2 sources of ammonia nearby: low pressure pure ammonia or high pressure "top of the tank" ammonia.
- Top of the tank ammonia contains all the volatile contaminants in the manufacturing process, with varying composition, such as CH4, CO2, N2 or Ar.
- Ammonia pressure was 7 bar in the inlet, which made the separator work at around 5 bar.

- Low temperature in separation:
 - The heat transfer expected with pure ammonia was better than with the "top of the tank" ammonia, which implied the temperature in the membranes was around 370°C, instead of the design 400°C.
 - Considering that only 70% of the inlet was ammonia, and that the separator was working at 5 bar and 370°C (instead of 8 bar and 400°C), the Hydrogen flowrate produced was smaller than the design:

Design	Design	Operation	Simulated for operation conditions
Ammonia purity (mol%)	99,99%	60-70%	60%
Membrane temperature	400ºC	370ºC	370ºC
Membrane pressure	8 bar	5 bar	5 bar
Hydrogen flow rate	0,91 kg/h	0,21 kg/h	0,288 kg/h

- THE ISSUE: Daily start-up and shut down
 - System is designed for 24/7 operation, but had to be operated 10/4, instead.
 - Shutdown procedure was modified to try to reduce heating time and optimise operation time:
 - ➤ This led to membrane damage.
 - NH3 entered the vacuum pump and damaged it.
 - Both the vacuum pump and the membranes had to be changed.
 - The Shutdown procedure was corrected to the original to avoid this issue from happening again.
 - The prototype was started again.

areNH₃a

areNH₃a

Lessons learnt

- Pressure drop thoughout the system can increase heating time if the required pressure nitrogen is not available.
- Oversizing heating capacity could compensate for temperature loss in the membrane reactor, to ensure it works under design conditions.
- > Shutdown operation is critical for membrane health.
- Thermal cycles (starting and stopping everyday) reduce the purity of the hydrogen.
- Everything is easier with a motivated and willing team, such as the one we found in CNH2 and Fertiberia.
- > The prototype has produced high purity hydrogen for 500 hours!

Next Steps

EUROPEAN PROJECTS

> APOLO PROJECT: NH3 cracking for marine applications

- Already building the prototype: same footprint as ARENHA, 10 times the hydrogen production capacity
- > Will be integrated with a fuel cell to produce electricity
- To be installed in Fertiberia.
- HERMES PROJECT: Design, construction and operation of 2 prototypes for H2 recovery in oil & gas applications.

COMMERCIAL PROJECTS

- Gas infrastructure maganement project with SNAM
 - ➤ 100 kg/day H2 separation facility in Italy.
- And much more to come!

Advanced materials and Reactors for Energy storage tHrough Ammonia

areNH₃a

Thank you for your attention

08/04/2025 Page 16

(Disclosure or reproduction without prior permission of ARENHA is prohibited).

M60 Consortium Meeting 24-03-2025