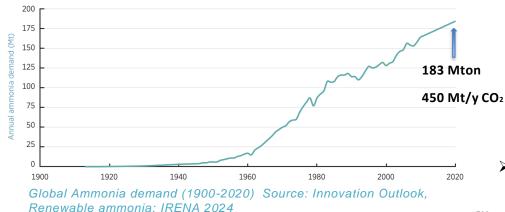


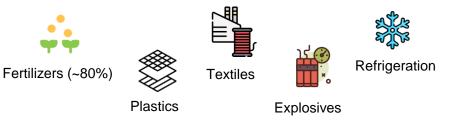
Advanced materials and Reactors for ENergy storage tHrough Ammonia

Unlocking the potential of ammonia as energy vector in energy transition: Market Trends and techno-economic assessment of ARENHA solutions

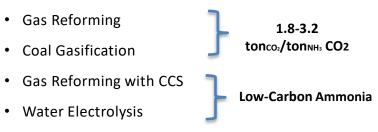

The present publication reflects only the author's views. The Commission is not responsible for any use that may be made of the information contained therein.

04/04/2025 Page I

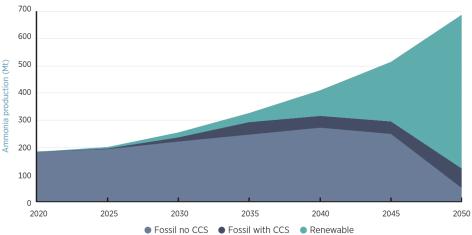
Ammonia Market Overview and Trends


Ammonia Demand and Applications

Existing uses:


areNH₃a

TU/e EINDHOVEN UNIVERSITY OF

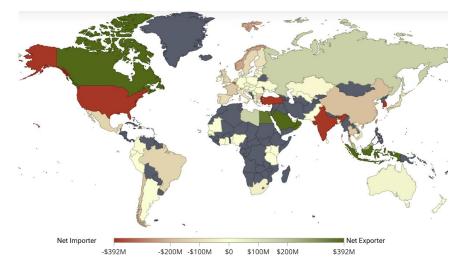


- The industry's current path is incompatible with climate neutrality goals.
- Low-Carbon ammonia could play a broader role in the energy transition, contributing to the decarbonization of the chemical industry, transportation and power generation sectors.

Hydrogen sourcing for NH₃ synthesis reaction:

NH3 demand could reach more than three times 2020 demand by 2050

Innovation Outlook, Renewable ammonia; IRENA 2024

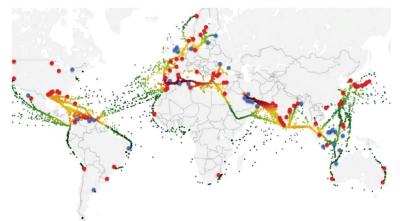

04/04/2025 Page 2

Ammonia Market Overview and Trends

Ammonia Market Trade

Anhydrous ammonia Product trade, Exporters and Importers in 2023 | Source: Observatory of Economic Complexity

Main Exporters:


 Trinidad and Tobago (18.6%), Saudi Arabia (15.3%), Indonesia (10%) and Canada (8.85%)

Main Importers:

 US (15.2%), India (13.6%), Morocco (9.75%), Turkey (4.81%) and Cina (3.51%)

In 2023 15 Mton of NH3 were traded worldwide, for a total market value of 9 Bn\$

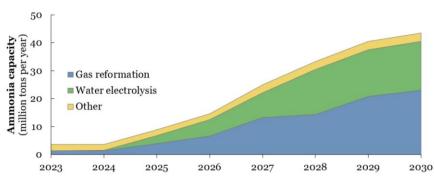
Ammonia loading facilities Ammonia unloading port facilities

Ammonia shipping infrastructure in 2017 , including a heat map of liquid ammonia carriers and existing ammonia port facilities. | Source: The Royal Society

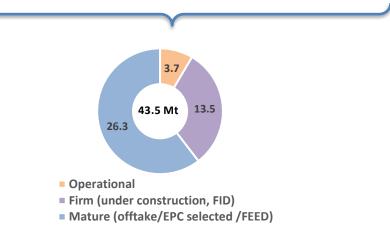
Existing ammonia trading infrastructure can support low-carbon ammonia exports

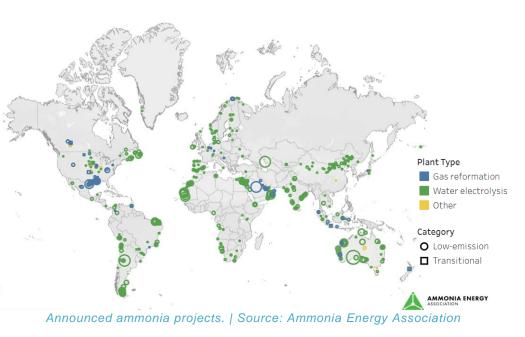
04/04/2025 Page 3

Ammonia Market Overview and Trends

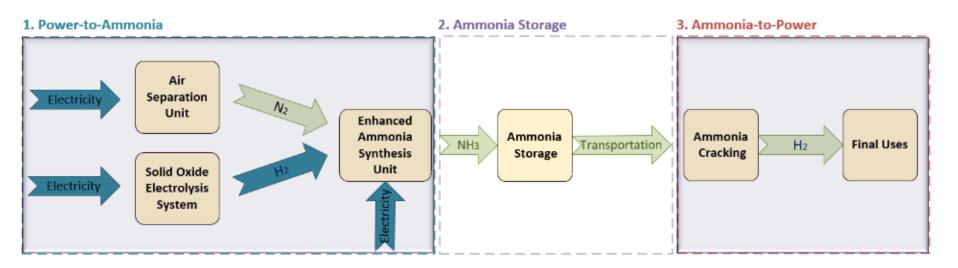


Low-Carbon Ammonia Supply


 485 Ammonia projects (Feb. 2025) from 102 (Dec. 2022) for a total 451.2 millions tons (Mt)


areNH_aa

 43.5 Mt ammonia capacity could be operational by 2030, 37.7 Mt low-carbon (~90%)


- Low-carbon ammonia project based on natural gas (blue) set to lead near term supply compared to electrolysis based (green) ammonia projects
 - High financing cost and low offtackers willingness to pay is a barrier for green ammonia project develoments

Need of **affordable** and **cost effective** green ammonia production technologies to move more projects towards Final Investiment Decision (FID)

04/04/2025 Page 4

ARENHA Techno-economic Assessment

Objectives:

Technology benchmarking;

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

areNH₃a

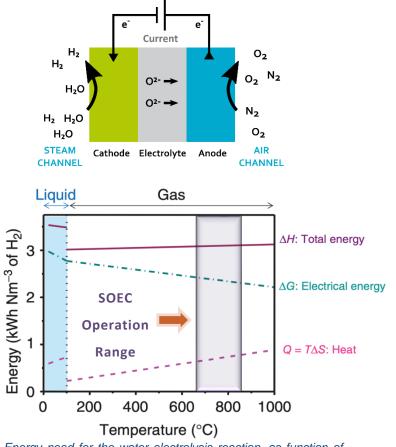
- Optimize system design and evaluate economic feasibility;
- Gain valuable technical insights to help make investment decision;

Solutions modelled:

- Power-to-Ammonia
- Ammonia Solid Storage
- Ammonia-to-Hydrogen

Power-to-Ammonia

Why Solid Oxide Electrolyis Cells (SOECs)?

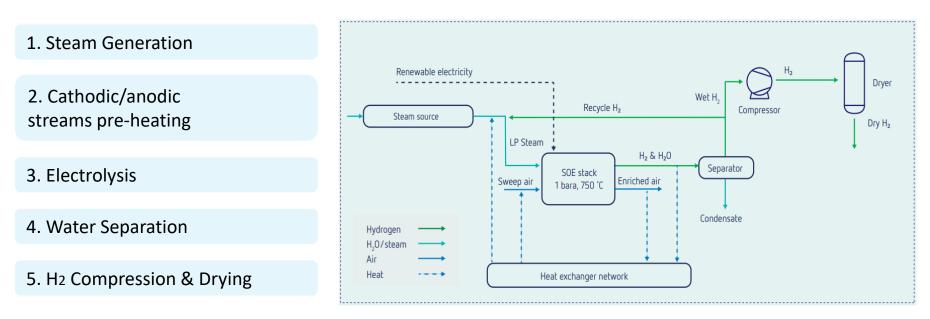

Cathode semi-reaction: $H_2 0 + 2e^- \rightarrow H_2 + 0^{2-}$

Anode semi-reaction: $0^{2-} \rightarrow \frac{1}{2}O_2 + 2e^{-}$

Overall Reaction: $H_2 O \rightarrow \frac{1}{2}O_2 + H_2$

Key Advantages of high temperature operation :

- Lower total and electrical energy expenditure →
 Higher efficiency (Lower OPEX)
- No need for Platinum-Group Metals (PGMs) → More robust supply chain
- Heat integration possibility (e.g. Power-to-X applications)


Energy need for the water electrolysis reaction, as function of temperature, enthalpy (Δ H), Gibbs free energy (Δ G) and entropy (T Δ S) (Source: G. Jopek, "Hydrogen Production by Electrolysis", 2018)

Solid Oxide Electrolysis Process Overview

High-temperature electrolysis process steps:

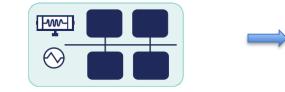
Green Hydrogen Production Process Based on SOEC (Source: ISPT, "Next Level Solid Oxide Electrolysis", 2023)

~5 kW ARENHA pilot! How to scale-up system for industrial application?

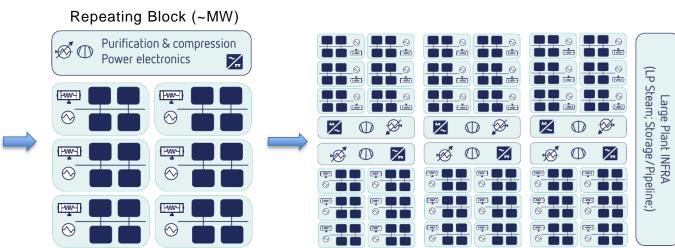
Cell/stack development and scale-up

Modular system approach \geq

04/04/2025 Page 7


Solid Oxide Electrolysis Process: Modularity

1. SOEC Cell (~W)

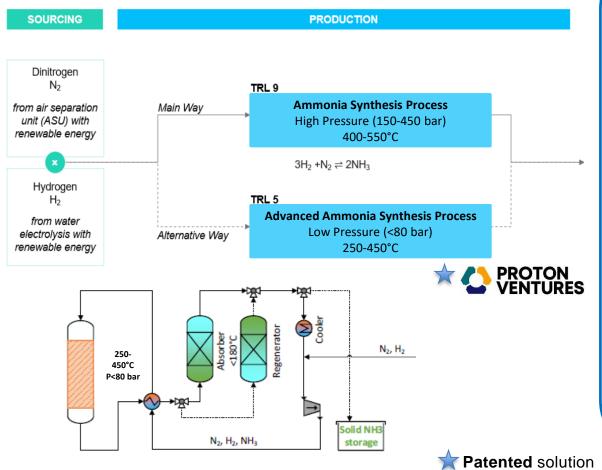


3. SOE Stack Module (Hot-box) (~kW to MW)

4. SOE System

5. Complete SOE Plant (~MW)

World biggest SOE project: Mountain view NASA Facility (Bloom Energy): 4 MW_{DC} (~2.4 tH2/d)



Power-to-Ammonia

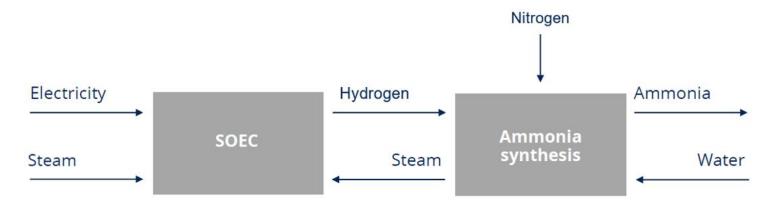
ARENHA Ammonia Synthesis Process

Advanced ammonia synthesis process developed in ARENHA consists of ammonia separation using absorption process allowing for milder operating conditions

Advantages of ARENHA advanced ammonia synthesis technology:
Lower equipment cost (15-20%)
Energy consumption comparable to traditional small scale green ammonia synthesis technologies;
No CO2 emissions;

• High system flexibility enhanced

by milder operating conditions.


04/04/2025 Page 9

ARENHA Power-to-Ammonia

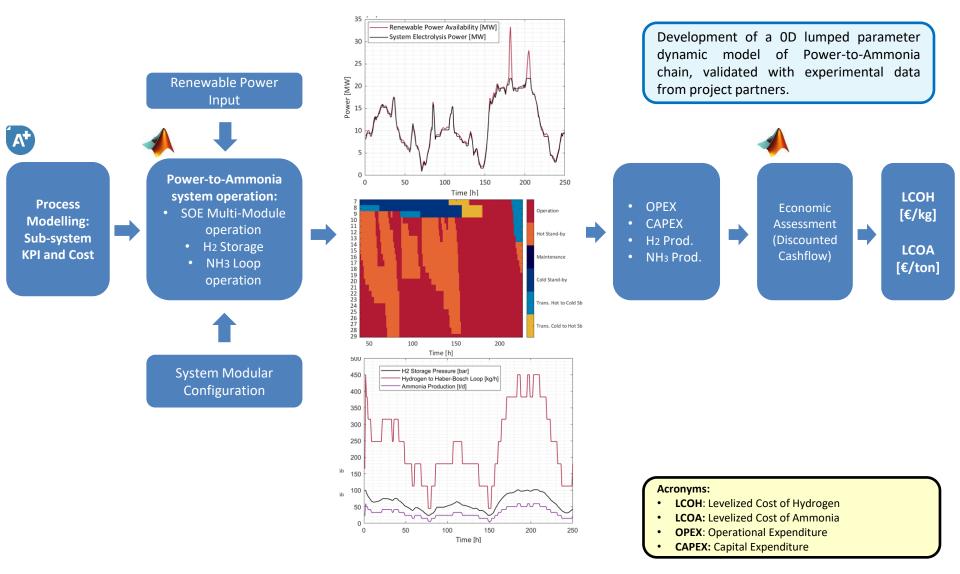
Synergy between Solid Oxide Electrolysis and Ammonia synthesis processes

- Solid Oxide Electrolyser (SOE)

- Lower energy consumption for H₂ production (47-50 kWh/kgH₂) compared to low temperature electrolysis solutions;
- High energy demand for steam vaporization (~ 20 % of total electrolyser electricity consumption):

- Ammonia Synthesis Loop

 High quality heat availability (T > 400°C) from ammonia synthesis reaction which can be used for steam production.


The **integration** of steam produced in ammonia synthesis loop in Solid Oxide Electrolyzer enables for superior efficiency, offering **greater performances** and **cost reduction potential** compared to low-temperature electrolysis-based Power-to-Ammonia solutions.

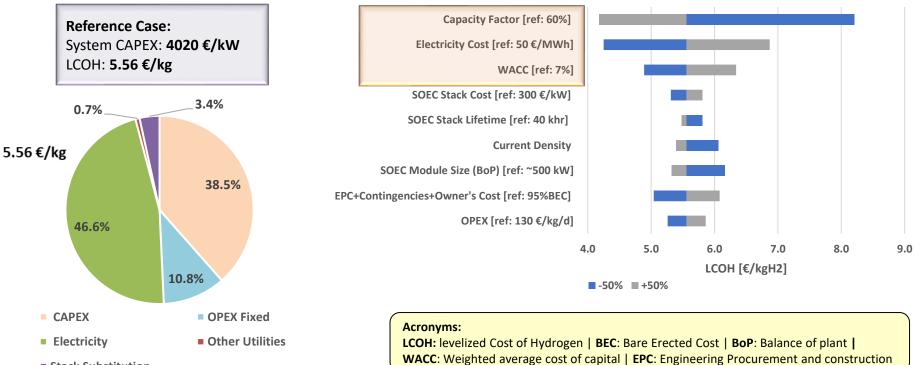
Power-to-Ammonia

Techno-economic Assessment Methodology

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

areNH₃a

04/04/2025 Page 11



Power-to-Ammonia

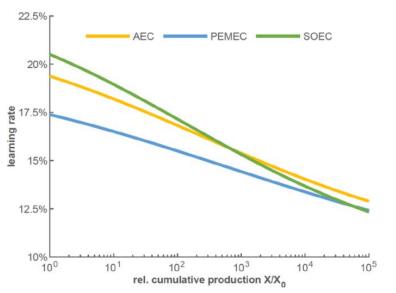
Results: Solid Oxide Electrolysis

~16 MW electrolysis power system (11.15 t/d H₂) fed by PV/Wind hybrid system

Stack Substitution

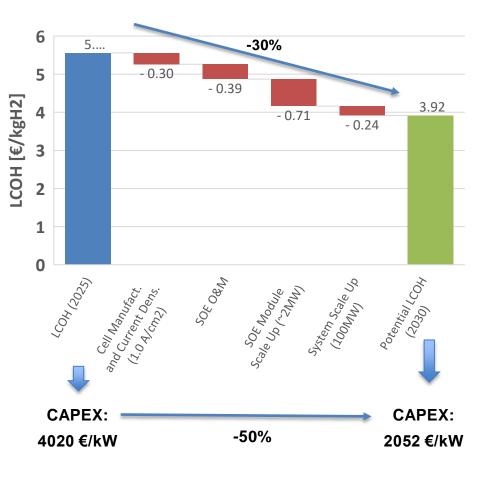
60% system availability. 30 Year plant operation, 50€/MWh electricity cost, 7% discount rate. Hydrogen output : 30 bar.

OPEX and CAPEX driven process. Main cost affecting parameters:


- Renewable energy availability (Capacity Factor);
- Electricity Cost;
- Project financing cost;

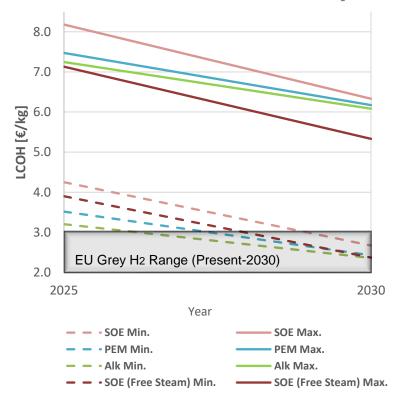
04/04/2025 Page 12

Results: Solid Oxide Electrolysis


Potential LCOH reduction driven technology improvement and CAPEX reduction

Estimated Learning rate of main electrolysis technologies. (Source: IRENA)

Solid Oxide Electrolysis benefit of a higher cost potential reduction (learning rate) compared to low temperature electrolysis technologies


Technology improvement, higher manufacturing rate and system scale up are crucial for CAPEX and LCOH reduction in SOE systems

Power-to-Ammonia

Results: Solid Oxide Electrolysis vs Low-T Electrolysis Technologies

areNH₃a

Electrolyzers operated with 60% year average capacity factor. Min and Max. refer respectively to 25 and 100 €/MWh electricity cost scenario. 30 years plant lifetime and 7% discount rate assumed. PEM and Alk. CAPEX and stack cost from STEPS scenario in [2]. 2025 PEM system energy consumption from [3], 2025 Alkaline system energy consumption from [4]. 2030 System energy consumption scenarios from [1].

- [2]. IEA, Global Hydrogen Review, 2024
- [3]. Cummins Hylizer specsheet, 2021

04/04/2025

[4]. Sunfire-Hylink Alkaline specsheet, 2025 Page 14

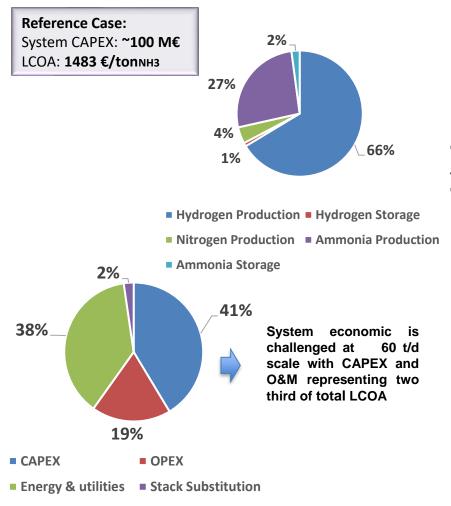
Scenario	2025			2030				
Electrolysis Technology	Alk	PEM	SOE	SOE (free steam)	Alk	PEM	SOE	SOE (free steam)
Installed Electrolysis Power [MW]	24.2	23.7	15.9	15.9	140	140	100	100
Hydrogen Production [t/d]		11.	15			7	70.00	
Tot. CAPEX* [€/kW] [2]	2000	2450	4020	3921	1250	1400	2052	1980
System Energy Consumption [kWh/kg _{H2}]	52	51	49.85	41.10	48	48	47.85	39.10

*CAPEX is calculated per kW of installed electrolysis power.

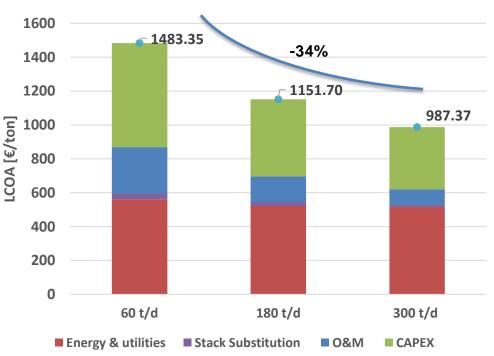
O&M: Operation and Maintenance | Alk: Alkaline electrolyser | PEM: Proton exchange membrane electrolyzer | SOE: Solid Oxide Electrolyzer

> Despite higher cost greater efficiency makes SOE potentially competitive with low-T electrolysis technologies, especially for high electricity cost and free steam to electrolyzer scenarios

^{[1].} Clean Hydrogen JU - SRIA Key Performance Indicators (KPIs) - Clean Hydrogen Partnership



Power-to-Ammonia


Results: Power-to-Ammonia

areNH₃a

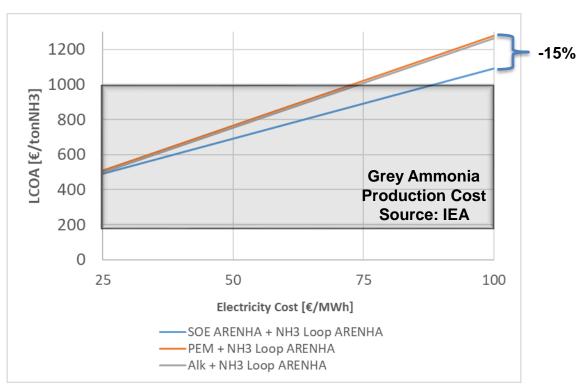
Power-to-Ammonia system based on SOE - ~16MW electrolysis power (~60t/dNH3):

Improving economics with system scale:

System operated with 60% year average capacity factor. 50€/MWh electricity cost, 30 years plant lifetime and 7% WACC assumed. A 100 bar H2 storage, 30 days ammonia storage and Nitrogen production were included in the study.

Increasing system scale could allow for economic competitiveness with traditional production pathways

04/04/2025 Page 15

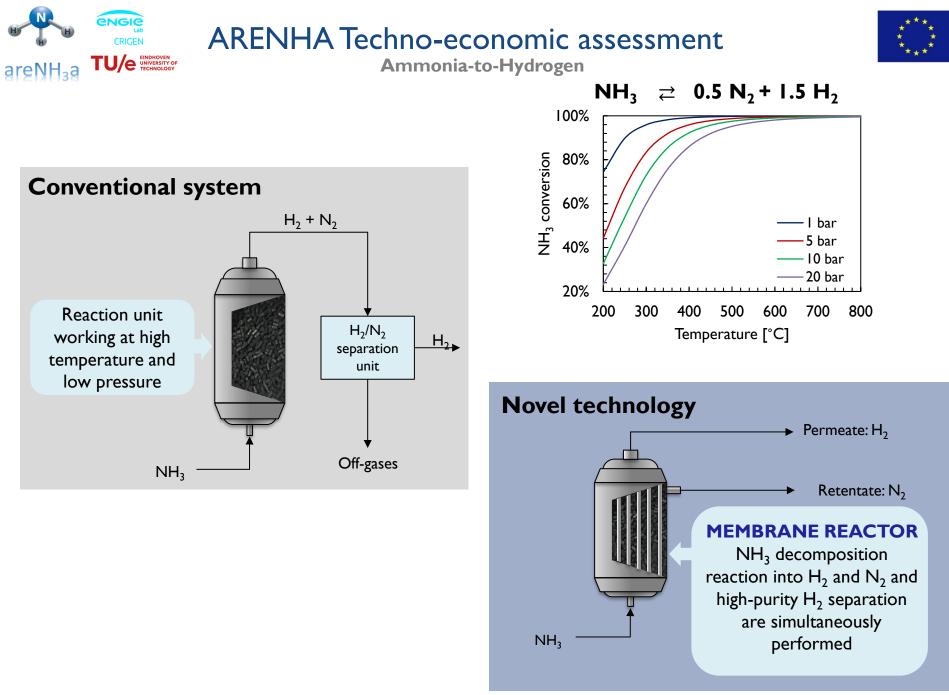


Results: Power-to-Ammonia

TU/e EINDHOVEN UNIVERSITY OF

areNH₃a

Comparison with low-temperature based PtA system

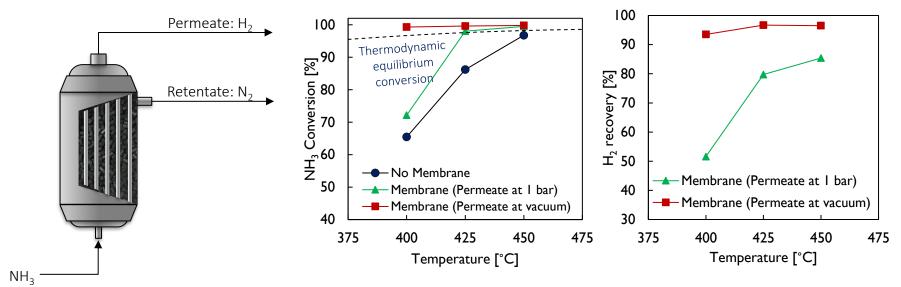


Analysis carried out for ~300 tNH3/d Power-to-Ammonia based on SOE, Alkaline and PEM electrolysis technologies, 90% system availability, 30 years plant lifetime and 7% discount rate.

ARENHA Power-to-Ammonia solution based on SOE could be competitive with Power-to-Ammonia solutions based on low temperature electrolysis technologies and with traditional production (in case favourable electricity market conditions)

What is required

- Continue R&D activities on SOE and enhanced NH₃ Synthesis
- Effort in scaling up (e.g. SOE stacks and modules)
- High energy utilisation and low electricity cost from renewable energy assets


(Disclosure or reproduction without prior permission of ARENHA is prohibited).

04/04/2025

Page 17

Experimental conditions				
∆P [bar]	3			
Permeate pressure [bar]	0.01-1			
Feed flow rate [L _N /min]	0.5			
Membrane	Double-skinned Pd-Ag			
Thickness selective layer [µm]	~4.61			

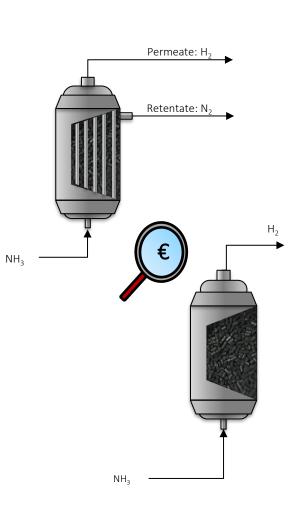
Compared to conventional systems, in a membrane reactor:

- Comparable or higher NH₃ conversion can be achieved at lower temperature (higher efficiencies)
- \Box High-purity H_2 is recovered

Cechetto, V.; Di Felice, L.; Medrano, J.A.; Makhloufi, C.; Zuniga, J.; Gallucci, F. H₂ production via ammonia decomposition in a catalytic membrane reactor, *Fuel Processing Technology*, **2021**, Volume 216, 106772, https://doi.org/10.1016/j.fuproc.2021.106772.

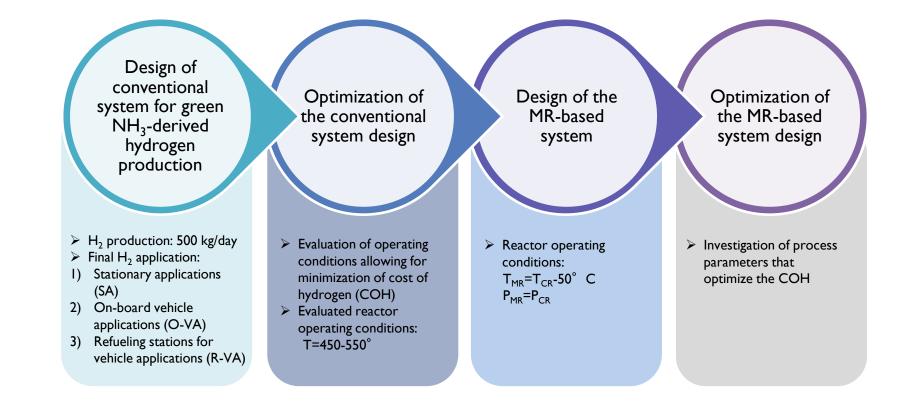
04/04/2025 Page 18

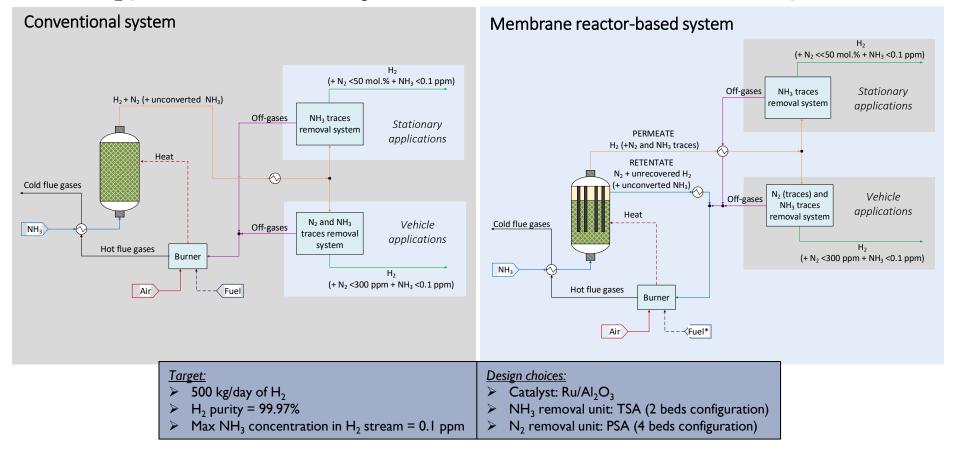
Ammonia-to-Hydrogen



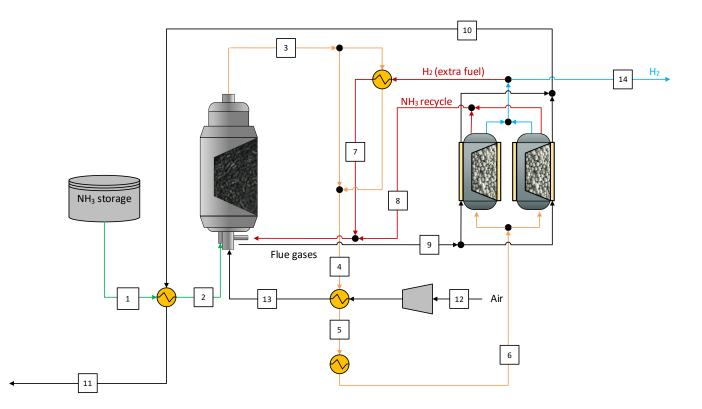
Is the membrane reactor-based system economically competitive compared to a conventional system?

Studies available in literature calculated the costs of hydrogen production, but a comparative study addressing a techno-economic assessment at different plant capacities and system configurations is not available.

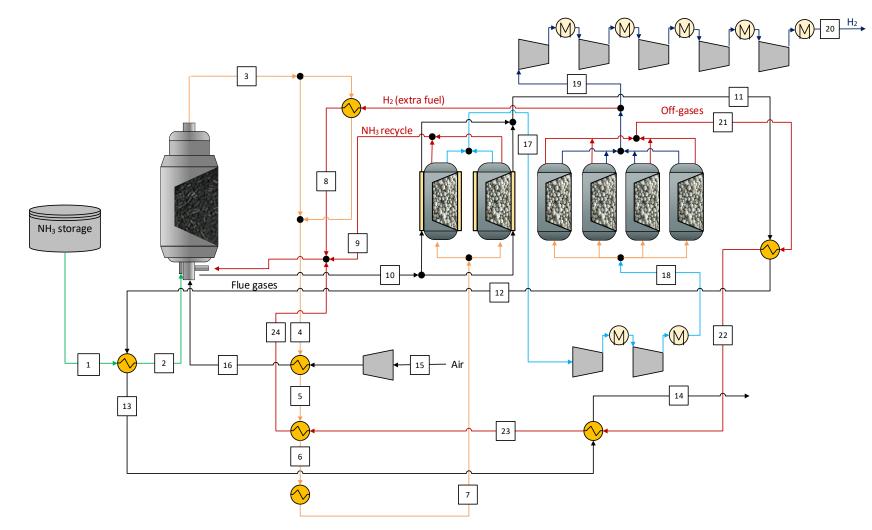

 Techno-economic assessment of a decentralized plant for hydrogen production from ammonia decomposition → H₂ for direct use in PEM fuel cells
 → Applications: stationary applications (a), on-board vehicle applications (b), and refuelling stations (c)



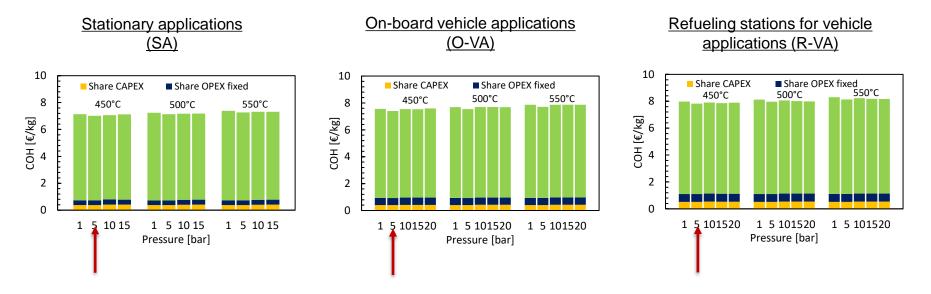
Ammonia-to-Hydrogen


H_2 production from NH_3 : the conventional and the MR-based systems

13

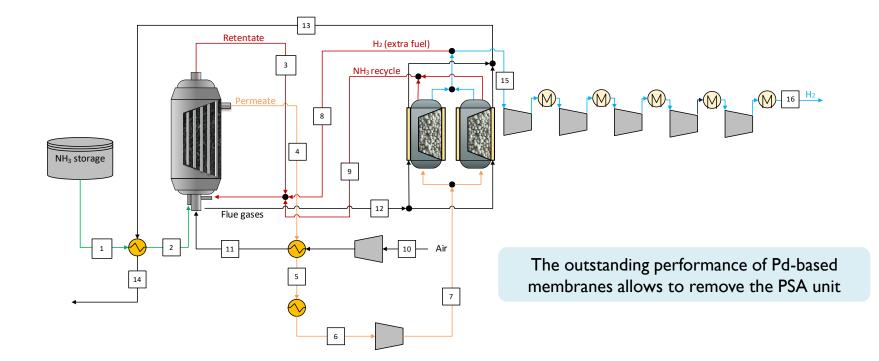

Design of the conventional process for SA

Design of the conventional process for VA



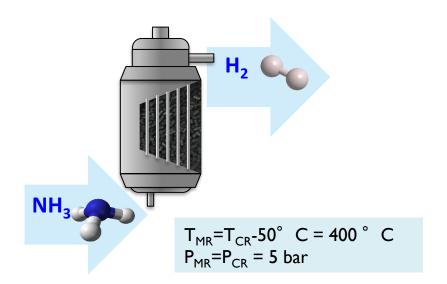
04/04/2025 Page 23

Ammonia-to-Hydrogen


Optimization of the conventional system

COH in the conventional system is minimized with the reactor operated at T=450 °C and 5 bar
 The process is OPEX-intensive with the cost of the NH₃ feedstock being the main contributor to COH

Design of the MR-assisted process for SA/VA



Ammonia-to-Hydrogen

Optimization of MR-based system

9.10 8% - · NH3 feedstock 7% 9.00 NH₃ feedstock [kmol/h] to burner Fraction of H2 to burner 6% 8.90 5% Minimum NH₂ feedstock Fraction of H_2 8.80 requirement 3% 8.70 2% 8.60 1% 8.50 0% 76% 78% 80% 82% 84% 86% H₂ recovery

Reactor optimization \neq Process optimization

A higher recovery reduces the available heat from the combustion of the retentate, which leads to an increased quantity of fuel that must be burned to sustain the NH_3 decomposition reaction and that, in turn, implies a greater flow rate of NH_3 to be processed.

The cost of $\ensuremath{\mathsf{NH}}_3$ feedstock is the main contributor to COH

Objective Minimization of the NH₃ feedstock

Ammonia-to-Hydrogen

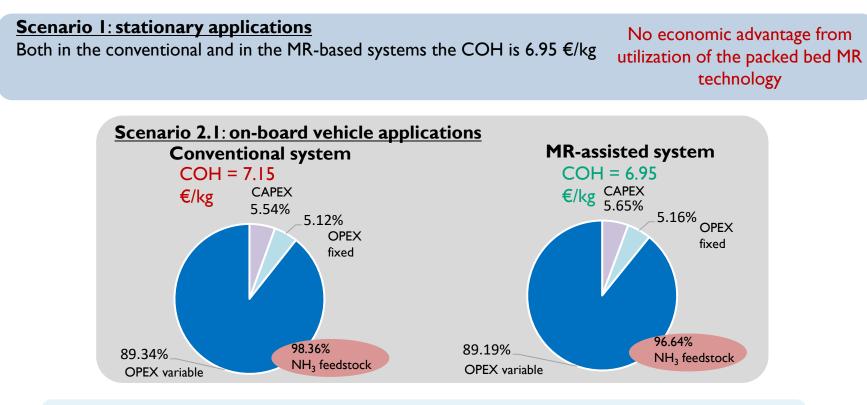
Technical assessment

Process		Conventional		MR-as	ssisted
Application	Stationary	Vehicle on-board	Vehicle refueling stations	Stationary and vehicle on-board	Vehicle refueling stations
Feedstock					
NH_3 [kg/h]	151.03	153.46	153.46	146.15	146.15
Thermal input [kW _{LHV}]	780.50	793.09	793.09	755.27	755.27
Chemical products					
$H_2 [kg/h]$	20.83	20.83	20.83	20.83	20.83
Thermal output [kW _{LHV}]	693.92	693.92	693.92	693.92	693.92
Cold Gas Efficiency (CGE)	88.91%	87.50%	87.50%	91.88%	91.88%
Electricity					
Air blower [kW _{el}]	1.95	2.29	2.29	1.87	1.87
Hydrogen booster [kW _{el}]	-	-	28.33	19.33	37.09
Hydrogen compressor [kW _{el}]	-	-	46.04	-	45.85
Vacuum pump [kW _{el}]	-	-	-	29.69	29.69
Total electricity [kW _{el}]	1.95	2.29	76.74	50.89	114.50
<i>Overall plant efficiency</i> (η_{tot})	88.69%	87.24%	79.78%	86.08%	79.78%

$$CGE = \frac{\dot{m}_{H_2}LHV_{H_2}}{\dot{m}_{NH_3}LHV_{NH_3}} \qquad \qquad \eta_{tot} = \frac{m_{H_2}LHV_{H_2}}{\dot{m}_{NH_3}LHV_{NH_3} + \frac{Q_{el}}{\eta_{el,ref}}}$$

T T T

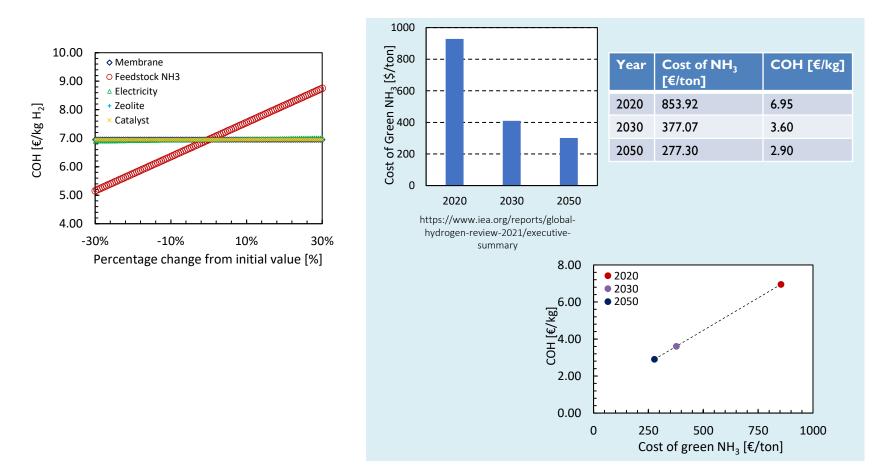
04/04/2025 Page 27 (Disclosure or reproduction



Ammonia-to-Hydrogen

Economic assessment

the packed bed MR technology competitive compared to the packed bed conventional technology?

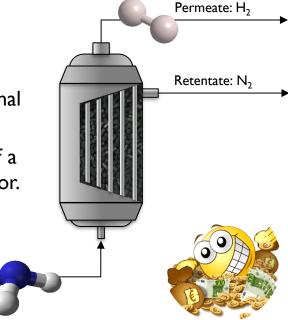

Similar conclusions to scenario 2.1 with COH_{conventional}=7.57 €/kg and COH_{MR-assisted}=7.38 €/kg

Economic assessment

Sensitivity analysis and forecasting

Ammonia-to-Hydrogen

Conclusions


In a membrane reactor for H_2 production from NH_3 :

- Higher efficiency and compactness compared to a conventional system are achieved
- □ Fuel cell-grade H_2 production is possible with the addition of a relatively inexpensive sorption unit downstream of the reactor.

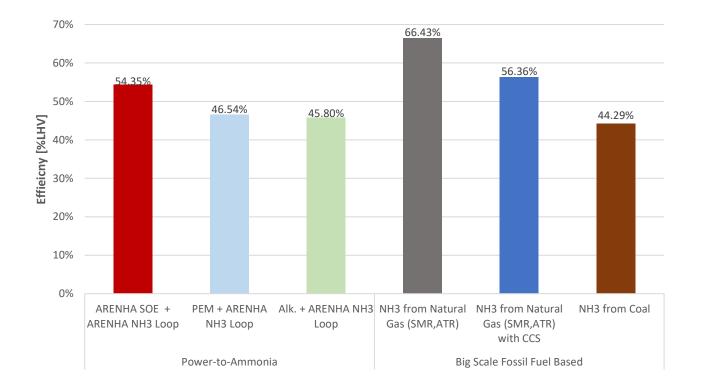
From an economic point of view, the recovery of H_2 from green NH_3 using MRs can be achieved at lower costs compared to the benchmark technology.

The MR technology holds significant potential in advancing the decarbonization of the current energy system.

Advanced materials and Reactors for Energy storage tHrough Ammonia

Thank you for your attention

Website: <u>arenha.eu/</u> LinkedIn: ARENHA Project Twitter: @ARENHA_H2020


04/04/2025 Page 31

Backup Slide: Power-to-Ammonia System Efficiency

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

areNH₃a

2.6-6.4 Modelling of the Complete System

and techno-economic analysis

Economic assessment: Cost estimation methodology and reference operation parameters and

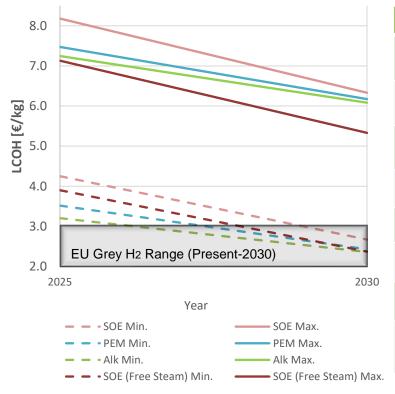
economic assumptions

 $LCOH = \frac{(TASC_{SOE} \cdot CRF) + C_{0\&M,fixed,SOE} + C_{0\&M,variable,SOE}}{M_{H2,produced}}$

 $LCOA = \frac{(TASC_{PtA} \cdot CRF) + C_{0\&M,fixed,SOE} + C_{0\&M,variable,PtA}}{M_{NH3,produced}}$

Cost Estima	ation	(AACE Class IV)		
Bare Erected Cost [k€]				
Equipment 1 Bare Erected Cost	А			
Equipment 2 Bare Erected Cost	в			
Equipment n Bare Erected Cost	Ν			
Bare Erected Cost [BEC]	A+B	++N		
<u>Direct Cost [</u> k€]				
SOEC Stack Installation	10%	BEC_SOEC		
EPC	15%	BEC		
Contingencies and Owner's Cos	<u>t_[</u> k€]			
Project Contingencies (PC) 15		BEC		
Process Contingencies (PSC)	10%	LO%(BEC+EPC+PC)		
Owner's Cost (OC)	ner's Cost (OC) 20%(BEC+EPC+PC+PSC)			
Total Plant Cost				
Total Plant Cost (TASC)	1.1*	(BEC+EPC+PC+PSC+OC)		
Econo	mic As	sumptions		
Plant Operation (n)		30 years		
Discount rate		7%		
SOEC Stack Cost [€/kW]		300 (IKTS) – 500 (Elcogen)		
SOEC Stack Installation Factor [€,	/kW]	40		
Cos	st Fixe	d O&M		
Maintenance (SOE) [€/kg/d]		130		

3%TOC


	Cost Varia	ble OPEX		
Electricity			50€/MWh	
Absorbent Cost		0.9 €/kg		
Catalyst Cost			30 €/kg	
Utilities (Refrigerant 5°C)			3.57 €/GJ	
Process Water			0.23 €/m3	
	Electrolyse	Operation		
Cell Technology	CSC (I	Elcogen)		
Nominal Temperature [°C]	E	580	800	
Cell Current Density [A/cm2]	C	0.50	0.6	
Cell Voltage [V]	~	1.32	~1.29	
Reactant Utilisation	7	'0%	75%	
Module Size [kW]	~	530	~520	
Stack Lifetime [hours]	4(0000	40000	
	PSA Op	eration		
Energy Consumption		0.6 GJ/ton		
	H2 Storage	Operation		
Nominal Pressure		100 bar		
Ammo	onia Synthes	is Loop Opera	tion	
Nominal Reactor Pressure		80 bar		
Reactor Inlet Temperature		300 °C		
Catalyst Type		Fe-Based (Wu)		
Absorbent Type		36% Mr	nCl2 – 64% Silica Gel	
	NH3 St	torage		
Storage Capacity			30 Days	

04/04/2025 Page 33

Maintenance (Others)

Backup Slide: Detailed assumption of electrolysis scenario analysis

areNH₃a

Scenario		2	025		2030			
Electrolysis Technology	Alk	PEM	SOE	SOE (free steam)	Alk	PEM	SOE	SOE (free steam)
Installed Electrolysis Power [MW]	24.2	23.7	15.9	15.9	140	140	100	100
Hydrogen Production [t/d]		1	1.15			7	70.00	
Tot. CAPEX* [€/kW] [2]	2000	2450	4020	3921	1250	1400	2052	1980
Stack Lifetime [khr]	80	50	4	10	80	80	4	0
O&M [€/(kg/d*y)] [1]	43	30	1	30	35	21	4	.5
Stack Replacement Cost [€/kW]	195	255	3	00	130	170	10	00
System Energy Consumption [kWh/kg _{H2}]	52	51	49.85	41.10	48	48	47.85	39.10

*CAPEX is calculated per kW of installed electrolysis power: Stack energy consumption for Alk. and PEM assumed close to total system energy consumption. **O&M**: Operation and Maintenance | **Alk:** Alkaline electrolyser | **PEM**: Proton exchange

membrane electrolyzer | SOE: Solid Oxide Electrolyzer

Despite higher cost greater efficiency makes SOE potentially competitive with low-T electrolysis technologies (especially with high electricity prices!)

Electrolyzers operated with 60% year average capacity factor. Min and Max. refer respectively to 25 and 100 €/MWh electricity cost scenario. 30 years plant lifetime and 7% WACC assumed. PEM and Alk. stack degradation [1]. PEM Alk and SOEC O&M from [1]. PEM and Alk. CAPEX and stack cost from STEPS scenario in [2]. 2025 PEM system energy consumption from [3], 2025 Alkaline system energy consumption from [4]. 2030 System energy consumption scenarios from [1].

- [2]. IEA, Global Hydrogen Review, 2024
- [3]. Cummins Hylizer specsheet, 2021
- [4]. Sunfire-Hylink Alkaline specsheet, 2025

^{[1].} Clean Hydrogen JU - SRIA Key Performance Indicators (KPIs) - Clean Hydrogen Partnership

Ammonia-to-Hydrogen

COH =	$(TOC \cdot CCF) + C_{O\&M,fixed} + C_{O\&M,variable}$
<i>con</i> –	Capacity · Plant availability

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

Plant Component	Cost [k€]	
Component W	Α	
Component X	В	
Component Y	С	
Component Z	D	
Bare Erected Cost [BEC]	A+B+C+D	
Direct costs as percentage of	of BEC	
Total Installation Costs [TIC]	80% BEC	
Total Direct Plant Cost [TDPC]	BEC+TIC	
Indirect Costs [IC]	14% TDPC	
Engineering procurement and construction [EPC]	TDPC+IC	
Contingencies and owner's	<u>costs</u>	
Contingency	10% EPC	
Owner's cost	5% EPC	
Total contingencies & OC [C&OC]	I 5% EPC	
Total Overnight Cost [TOC]	EPC+C&OC	

$$C_{i} = C_{0} \cdot \left(\frac{S_{i}}{S_{0}}\right)^{n} \cdot F_{p} \cdot F_{m} \cdot F_{T} \cdot \frac{CEPCI}{CEPCI_{reference year}}$$

Cost O&M fixed				
Maintenance	2.5% TOC			
Insurance	2% TOC			
Labor	27991 €/year/pp ¹			

COST O&M variable				
Green NH_3	853.92 €/ton ²			
Electricity	0.085 €/kWh ³			
Catalyst	143 €/kg ³			
Zeolite I3X	43.7 €/kg ⁴			
Membrane	6000 €/m ³			

Assumptions		
Plant availability	90%	
Plant lifetime (n)	25 years ³	
Catalyst lifetime	5 years ³	CCF
Lifetime Zeolite 13X	5 years	
Membrane lifetime	5 years	
Discount factor (i)	8% ³	

 $=\frac{(i+1)^n}{((i+1)^n-1)}$

¹ <u>https://www.payscale.com/research/NL/Job=Chemical_Process_Operator/Salary</u>

² https://www.iea.org/reports/global-hydrogen-review-2021/executive-summary
 ³ S. Richard, A. Ramirez Santos, and F. Gallucci, "PEM genset using membrane reactors technologies An economic comparison among different e-fuels", International Journal of Hydrogen Energy

⁴ https://www.msesupplies.com/products/1kg-molecular-sieves-13x-pelletsspheres?variant=31758805205050

Ammonia-to-Hydrogen

Technical assessment

-	Conventional process Stationary applications	Conventional process Vehicle applications	MR-assisted process Stationary and vehicle applications
Reactor operating conditions			••
Reaction temperature [°C]	450	450	400
Reaction pressure [bar]	5	5	5
Permeate pressure [bar]	-	-	0.1
Feedstock			
NH ₃ flow rate at reactor inlet	151.03 kg/h	153.46 kg/h	146.15 kg/h
	8.87 kmol/h	9.01 kmol/h	8.58 kmol/h
Energy requirement			
Thermal input [kW]	127.51	129.58	123.72
KPI			
NH ₃ conversion	97.8%	97.8%	99.1%
H ₂ recovery	-	-	80.6%
Reactor efficiency ($\eta_{reactor}$)	96.2%	96.2%	79.2%* (97.4%**)
$\eta_{NH_3 to H_2}$	5.8 kg/kg	5.8 kg/kg	7.0 kg/kg* (5.7 kg/kg**)

* Calculated considering as valuable reaction product only hydrogen available at the reactor's permeate side

** Calculated considering as valuable reaction product both the hydrogen available at the reactor's permeate and retentate sides

$$\eta_{\text{reactor}} = \frac{\dot{m}_{\text{H}_2} \text{LHV}_{\text{H}_2}}{\dot{m}_{\text{NH}_3} \text{LHV}_{\text{NH}_3} + W_{\text{in}}}$$